The basis of this analog prediction scheme uses the notable temperature and precipitation anomaly from the last 30 days (or so) and in a ‘fuzzy’ way – that is setting all anomalies to +/- 0.5 standard deviations from the long-term mean – and matches these patterns to the climate division anomalies from 1895- present. The best matched years are selected (using a dozen or less) and these are used to produce the composite anomalies for the next two months and the years are used to create a composite daily anomaly for three regions of Pennsylvania.
Pennsylvania, much of the Northeast and a bit of Texas felt the heat this month. However, much of the West stretching into the Central Rockies struggled to reach seasonal temperatures.
The month of May brought flooding and record monthly precipitation to the state of Montana, so it is no surprise that Montana and much of the West had above normal precipitation, as well as northern Arkansas. Many southern states, especially New Mexico, could use some of that rain as they were below normal rainfall totals.

These anomalies were input into the analog-mapper to determine from climate division data which years in the past best match this configuration. The years were:

Listed below are the composite departures of precipitation and temperature for June through July.

Composite Standardized Precipitation Anomalies
Versus 1895–2000 Longterm Average

[Map showing composite standardized precipitation anomalies with a color scale ranging from -0.50 to 0.30]